Criteria for Accrediting Computing Programs
Effective for Evaluations during the 2010-2011 Accreditation Cycle

Definitions
(From Section II.D.1. of the ABET Accreditation Policy and Procedure Manual)

While ABET recognizes and supports the prerogative of institutions to use and adopt the terminology of their choice, it is necessary for ABET volunteers and staff to have a consistent understanding of terminology. With that purpose in mind, the Commissions will use the following basic definitions:

Program Educational Objectives – Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

Program Outcomes – Program outcomes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire in their matriculation through the program.

Assessment – Assessment is one or more processes that identify, collect, and prepare data to evaluate the achievement of program outcomes and program educational objectives.

Evaluation – Evaluation is one or more processes for interpreting the data and evidence accumulated through assessment practices. Evaluation determines the extent to which program outcomes or program educational objectives are being achieved, and results in decisions and actions to improve the program.

It is the responsibility of the program seeking accreditation to demonstrate clearly that the program meets the following criteria.

GENERAL CRITERIA

Criterion 1. Students
Students can complete the program in a reasonable amount of time. They have ample opportunity to interact with their instructors. Students are offered timely advising, by qualified individuals, about the program’s requirements and their career alternatives. Students who graduate from the program meet all program requirements.

Criterion 2. Program Educational Objectives
The program has documented, measurable educational objectives that are based on the needs of the program’s constituencies.

Criterion 3. Program Outcomes
The program has documented, measurable outcomes that are based on the needs of the program’s constituencies.

The program enables students to achieve, by the time of graduation:

(a) An ability to apply knowledge of computing and mathematics appropriate to the discipline
(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
(c) An ability to design, implement, and evaluate a computer-based system, process, component,
or program to meet desired needs

(d) An ability to function effectively on teams to accomplish a common goal

(e) An understanding of professional, ethical, legal, security and social issues and responsibilities

(f) An ability to communicate effectively with a range of audiences

(g) An ability to analyze the local and global impact of computing on individuals, organizations, and society

(h) Recognition of the need for and an ability to engage in continuing professional development

(i) An ability to use current techniques, skills, and tools necessary for computing practice.

Criterion 4. Continuous Improvement

The program uses a documented process incorporating relevant data to regularly assess its program educational objectives and program outcomes, and to evaluate the extent to which they are being met. The results of the evaluations are documented and used to effect continuous improvement of the program through a documented plan.

Criterion 5. Curriculum

The program’s requirements are consistent with its educational objectives and are designed in such a way that each of the program outcomes can be achieved. The curriculum combines technical and professional requirements with general education requirements and electives to prepare students for a professional career and further study in the computing discipline associated with the program, and for functioning in modern society. The technical and professional requirements include at least one year of up-to-date coverage of fundamental and advanced topics in the computing discipline associated with the program. In addition, the program includes mathematics appropriate to the discipline beyond the pre-calculus level. For each course in the major required of all students, its content, expected performance criteria, and place in the overall program of study are published.

Criterion 6. Faculty

A. Faculty Qualifications

 Faculty members teaching in the program are current and active in the associated computing discipline. They each have the educational backgrounds or expertise consistent with their expected contributions to the program. Each has a level of competence that normally would be obtained through graduate work in the discipline, relevant experience, or relevant scholarship. Collectively, they have the technical breadth and depth necessary to support the program.

B. Faculty Size and Workload

 There are enough full-time faculty members to provide continuity, oversight, and stability, to cover the curriculum reasonably, and to allow an appropriate mix of teaching, professional development, scholarly activities, and service for each faculty member. The faculty assigned to the program has appropriate authority for the creation, delivery, evaluation, and modification of the program, and the responsibility for the consistency and quality of its courses.
Criterion 7. Facilities

Institutional facilities including the library, other electronic information retrieval systems, computer networks, classrooms, and offices are adequate to support the educational objectives and outcomes of the program.

Computing resources are available, accessible, systematically maintained and upgraded, and otherwise adequately supported to enable students to achieve the program’s outcomes and to support faculty teaching needs and scholarly activities. Students and faculty members receive appropriate guidance regarding the computing resources and laboratories available to the program.

Criterion 8. Support

The institution’s support for the program and the financial resources available to the program are sufficient to attract and retain qualified faculty members, administer the program effectively, acquire and maintain computing resources and laboratories, and otherwise provide an environment in which the program can achieve its educational objectives and outcomes. Support and resources are sufficient to provide assurance that the program will retain its strength throughout the period of accreditation.

Criterion 9. Program Criteria

Each program must satisfy applicable Program Criteria (if any). Program Criteria provide the specificity needed for interpretation of the General Criteria as applicable to a given discipline. If a program, by virtue of its title, becomes subject to two or more sets of Program Criteria, then that program must satisfy each set of Program Criteria; however, overlapping requirements need to be satisfied only once.
These program criteria apply to computing programs using computer science or similar terms in their titles.

3. Program Outcomes

 The program enables students to achieve, by the time of graduation:

 (j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices. [CS]

 (k) An ability to apply design and development principles in the construction of software systems of varying complexity. [CS]

5. Curriculum

 Students have the following amounts of course work or equivalent educational experience:

 a. Computer science: One and one-third years that includes:

 1. coverage of the fundamentals of algorithms, data structures, software design, concepts of programming languages and computer organization and architecture. [CS]
 2. an exposure to a variety of programming languages and systems. [CS]
 3. proficiency in at least one higher-level language. [CS]
 4. advanced course work that builds on the fundamental course work to provide depth. [CS]

 b. One year of science and mathematics:

 1. Mathematics: At least one half year that must include discrete mathematics. The additional mathematics might consist of courses in areas such as calculus, linear algebra, numerical methods, probability, statistics, number theory, geometry, or symbolic logic. [CS]
 2. Science: A science component that develops an understanding of the scientific method and provides students with an opportunity to experience this mode of inquiry in courses for science or engineering majors that provide some exposure to laboratory work. [CS]

6. Faculty Qualifications

 Some full time faculty members have a Ph.D. in computer science.